An analytic approach to the ergodic theory of a stochastic variational inequality
نویسندگان
چکیده
In an earlier work made by the first author with J. Turi (Degenerate Dirichlet Problems Related to the Invariant Measure of Elasto-Plastic Oscillators, AMO, 2008), the solution of a stochastic variational inequality modeling an elasto-perfectly-plastic oscillator has been studied. The existence and uniqueness of an invariant measure have been proven. Nonlocal problems have been introduced in this context. In this work, we present a new characterization of the invariant measure. The key finding is the connection between nonlocal PDEs and local PDEs which can be interpreted with short cycles of the Markov process solution of the stochastic variational inequality. Résumé Une approche analytique de la théorie ergodique des inéquations variationnelles stochastiques. Dans un travail précédent du premier auteur en collaboration avec Janos Turi (Degenerate Dirichlet Problems Related to the Invariant Measure of Elasto-Plastic Oscillators, AMO, 2008), la solution d’une inéquation variationnelle stochastique modélisant un oscillateur élastique-parfaitement-plastique a été étudiée. L’existence et l’unicité d’une mesure invariante ont été prouvées. Des problèmes nonlocaux ont été introduits dans ce contexte. La conclusion importante est la connexion entre des EDPs nonlocales et des EDPs locales qui peuvent être interprétées comme les cycles courts du processus de Markov solution de l’inéquation variationnelle stochastique. Version française abrégée La dynamique de l’oscillateur élastique-parfaitement-plastique s’exprime à l’aide d’une équation à mémoire (voir (1)-(2)). A. Bensoussan et J. Turi ont montré que la relation entre la vitesse et la composante élastique de l’oscillateur est un processus de Markov ergodique qui satisfait une inéquation variationnelle stochastique (voir (3)). La solution admet une mesure invariante caractérisée par dualité à l’aide d’une équation aux dérivées partielles avec des conditions de bord non-locales (voir (4)). Dans ce travail, une nouvelle preuve de la théorie ergodique est présentée ainsi qu’une nouvelle caractérisation de l’unique distribution invariante. Dans ce contexte, nous déduisons des nouvelles formules reliant des équations aux dérivées partielles avec des conditions de bord non-locales à des problèmes locaux (voir (10)). This research was partially supported by a grant from CEA, Commissariat à l’énergie atomique and by the National Science Foundation under grant DMS-0705247. A large part of this work was completed while one of the authors was visiting the University of Texas at Dallas and the Hong-Kong Polytechnic University. We wish to thank warmly these institutions for the hospitality and support. Email addresses: [email protected] (Alain Bensoussan), [email protected] (Laurent Mertz) Preprint submitted to Elsevier December 18, 2011
منابع مشابه
Existence of solutions for a variational inequality on the half-line
In this paper we study the existence of nontrivial solutions for a variational inequality on the half-line. Our approach is based on the non-smooth critical point theory for Szulkin-type functionals.
متن کاملAn Iterative Scheme for Generalized Equilibrium, Variational Inequality and Fixed Point Problems Based on the Extragradient Method
The problem ofgeneralized equilibrium problem is very general in the different subjects .Optimization problems, variational inequalities, Nash equilibrium problem and minimax problems are as special cases of generalized equilibrium problem. The purpose of this paper is to investigate the problem of approximating a common element of the set of generalized equilibrium problem, variational inequal...
متن کاملA variational approach to the problem of oscillations of an elastic half cylinder
This paper is devoted to the spectral theory (more precisely, tothe variational theory of the spectrum) of guided waves in anelastic half cylinder. We use variational methods to investigateseveral aspects of propagating waves, including localization (seeFigure 1), existence criteria and the formulas to find them. Weapproach the problem using two complementary methods: Thevariational methods fo...
متن کاملThe Shepp–Shiryaev stochastic game driven by a spectrally negative Lévy process
In [15], the stochastic-game-analogue of Shepp and Shiryaev’s optimal stopping problem (cf. [23] and [24]) was considered when driven by an exponential Brownian motion. We consider the same stochastic game, which we call the Shepp–Shiryaev stochastic game, but driven by a spectrally negative Lévy process and for a wider parameter range. Unlike [15], we do not appeal predominantly to stochastic ...
متن کاملDynamic Optimization of Long-term Growth Rate for a Portfolio with Transaction Costs and Logarithmic Utility
We study the optimal investment policy for an investor who has available one bank account and n risky assets modeled by log-normal diffusions. The objective is to maximize the long-run average growth of wealth for a logarithmic utility function in the presence of proportional transaction costs. This problem is formulated as an ergodic singular stochastic control problem and interpreted as the l...
متن کامل